P. Gregory Van Patten
Middle Tennessee State University, USA
Title: Developing cation exchange as a viable strategy for nanoparticle synthesis
Biography
Biography: P. Gregory Van Patten
Abstract
Semiconductor quantum dots (QDs) are promising materials with interesting, size-dependent properties. Although a few model systems (CdSe, PbS, and some others) have been developed, optimized, and thoroughly studied over the past few decades, there remain several obstacles that prevent their adoption in a variety of applications. One principal challenge is the inability to access a diverse range of QD materials with excellent control over size, shape, crystallinity, and surface chemistry. Control over these QD characteristics is crucial for the production high quality materials. Since direct synthetic approaches that afford such control have been elusive, we have been exploring cation exchange (CE) as a route to QDs with new compositions. To make CE a viable approach, it must be scalable, must be widely applicable, and must proceed to completion. Additionally, it is desirable to be able to achieve partial exchanges to produce alloy or heterostructures. I will summarize our progress on these goals to date.